Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models
نویسندگان
چکیده
In the last few years, we have seen the transformative impact of deep learning in many applications, particularly in speech recognition and computer vision. Inspired by Google's Inception-ResNet deep convolutional neural network (CNN) for image classification, we have developed"Chemception", a deep CNN for the prediction of chemical properties, using just the images of 2D drawings of molecules. We develop Chemception without providing any additional explicit chemistry knowledge, such as basic concepts like periodicity, or advanced features like molecular descriptors and fingerprints. We then show how Chemception can serve as a general-purpose neural network architecture for predicting toxicity, activity, and solvation properties when trained on a modest database of 600 to 40,000 compounds. When compared to multi-layer perceptron (MLP) deep neural networks trained with ECFP fingerprints, Chemception slightly outperforms in activity and solvation prediction and slightly underperforms in toxicity prediction. Having matched the performance of expert-developed QSAR/QSPR deep learning models, our work demonstrates the plausibility of using deep neural networks to assist in computational chemistry research, where the feature engineering process is performed primarily by a deep learning algorithm.
منابع مشابه
A novel topological descriptor based on the expanded wiener index: Applications to QSPR/QSAR studies
In this paper, a novel topological index, named M-index, is introduced based on expanded form of the Wiener matrix. For constructing this index the atomic characteristics and the interaction of the vertices in a molecule are taken into account. The usefulness of the M-index is demonstrated by several QSPR/QSAR models for different physico-chemical properties and biological activities of a large...
متن کاملHow Much Chemistry Does a Deep Neural Network Need to Know to Make Accurate Predictions?
The meteoric rise of deep learning models in computer vision research, having achieved human-level accuracy in image recognition tasks is firm evidence of the impact of representation learning of deep neural networks. In the chemistry domain, recent advances have also led to the development of similar CNN models, such as Chemception, that is trained to predict chemical properties using images o...
متن کاملQSPR Analysis with Curvilinear Regression Modeling and Topological Indices
Topological indices are the real number of a molecular structure obtained via molecular graph G. Topological indices are used for QSPR, QSAR and structural design in chemistry, nanotechnology, and pharmacology. Moreover, physicochemical properties such as the boiling point, the enthalpy of vaporization, and stability can be estimated by QSAR/QSPR models. In this study, the QSPR (Quantitative St...
متن کاملUsing Rule-Based Labels for Weak Supervised Learning
With access to large datasets, deep neural networks (DNN) have achieved humanlevel accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and many chemical properties of research interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with ...
متن کاملIn-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors
In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1706.06689 شماره
صفحات -
تاریخ انتشار 2017